The Message Passing

Implementation
of

GISS modelE

T. Clune, R. deFainchtein, H. Oloso, and U. Ranawake
NASA Goddard Space Flight Center
Advanced Software Technology Group
Code 610.3
Greenbelt, MD 20771

June 5, 2005

Abstract

The message-passing implementation for modelE is presented. De-
tails include the approach to domain decomposition, interfaces for new
procedures, and discussions of special cases.

i

Contents

Introduction

Message Passing and Domain Decomposition

2.1 Aside on the Shared-Memory Paradigm
2.2 Aside on MPI - the Message Passing Interface
2.3 Aside on ESMF Infrastructure
2.4 Specific Design Choices for modelE

Data Structures

3.1 The Defalult “Grid” and Creating New Grids
3.2 Allocating arrays
3.3 Declaring dummy arrays and local arrays

Distribution of Parallel Work

4.1 Determining Local Extents and Halos

4.2 Modifying Loops over Latitudes
4.2.1 Unusual Bounds

4.3 Special Issues
4.3.1 Stopping the Parallel Code
4.3.2 Random Number Generator
4.3.3 Serialized Operations

Communication

5.1 The Halo Methodology

5.2 GlobalSum

5.3 Input and Output
5.3.1 Messages to STDOUT
5.3.2 File based 1/0 of distributed quantities

5.4 Distributed transposeo

Using Parallel Implementation

6.1 Current Limits of Implementation

6.2 System Issues with Running Parallel Code
6.2.1 Special Launch Environment
6.2.2 Special Launch Mechanism

6.3 Building and Running the Parallel Execuatable
6.3.1 Porting Issues L.

iii

7 Tips for Debugging and Tuning
7.1 Debugging MPI
7.1.1 Checksum()
7.1.2 Parallel Debuggers,
7.2 Performance Measurement and Tuning
721 Amdahl'sLaw
7.2.2 Load Imbalance and Barriers
723 TAU . ..

8 Future Directions
8.1 Using more Processors
8.1.1 Relaxing 1D Decomposition Restrictions.
8.1.2 2D Decomposition
8.1.3 Hybrid MPI-OpenMP
8.2 Alternative Algorithms
8.2.1 Asynchronous Communication
8.3 Serial Optimization

A List of Unusual Bounds Cases

v

37
38
38
39
39
40
41
41

41
41
41
41
42
42
42
43

45

1 Introduction

MODELE [7]is a well-known and highly effective general circulation model
used to study various aspects of the Earth’s climate including long term
effects due to human activities. This application has been developed over
many years by researchers at the Goddard Institute for Space Studies (GISS)
and their collaborators, and currently consumes a substantial fraction of
NASA supercomputing resources each year.

This document is primarily intended to serve as a developer guide for the
message-passing parallel implementation of GISS MODELE, but also as a fi-
nal report on the project which has produced this implementation. Although
MODELE had previously been parallelized using OpenMP (shared-memory)
directives, the inherent performance/portability limitations were often in-
adequate for some of the more demanding (e.g. higher-spatial resolution)
computational experiments. In the Fall of 2003, a collaboration among the
Advanced Software Technology Group (ASTG) !, the Global Modeling and
Assimilation Office (GMAO), and GISS was established to produce firstly a
parallel implementation of MODELE suitable for running across nodes of a
distributed-memory parallel platform and subsequently to use the recently
developed Earth System Modeling Framework (ESMF) to produce a vari-
ant of MODELE which uses the Lin-Rood finite-volume (FV) dynamical core
[5, 6, 3, 4. The ASTG was to perform the majority of the software modi-
fications, while the GMAQO was to provide guidance based upon experience
both with the F'V core and with parallelization of similar models. GISS was
to provide expertise on the existing implementation, and is primarily the
customer for these activities.

Because MODELE is a constantly evolving instrument for scientific inves-
tigation with many and varied developers, special measures were required
to ensure that the parallelization activity did not unduly impact software
modifications related to scientific improvement of the model. In particular,
software change procedures were created which enabled the default build-
configuration (parallelization via OpenMP) to function correctly throughout
the entire development period. Well-documented verification procedures were
established to guarantee bit-wise reproducibility prior to merging changes

'For the majority of the duration of this activity, the ASTG was part of the Science
Computing Branch, but has been relocated within the newly formed Software Integration
and Visualization Office (SIVO) as part of an unrelated Goddard reorganization, effective
in January 2005.

into the software repository. An interesting complication arose from the
fact that some of the verification procedures are rather time-intensive and
therefore interfered with the desired policy of frequent software commits. To
minimize this inherent conflict, the ASTG created a separate repository to
facilitate routine software changes/commits and performed merges of the two
repositories on a less-frequent basis when full verification procedures could
be performed. On the few occasions where the merge was thought to be
quite significant, a request was made for a freeze in activity on the part of
other developers. A secondary benefit of this approach was a reduction in
the number of rather cumbersome interactions with GISS’ computer security
fire-wall.

Another important guiding principle for software modifications was to en-
sure that the pre-existing scientific developers of MODELE be able to readily
recognize, maintain and modify essentially all parts of the delivered software.
An all-too-frequent failure mode of projects such as the one described here
is the development of a fully-functional, clean software application that is
never adopted by the customer due to lack of familiarity. It must be empha-
sized, however, that there are significant costs associated with our approach.
Such conservative software policies often increases the so-called “code-debt”
- aspecs of the code that should be restructured to improve long-term main-
tenance and/or flexibility, but are deferred due to more immediate concerns.
The trade-offs which must be considered are time-to-delivery and the num-
ber/frequency of future similar projects on the same code base. Fortunately,
the familiarity issue does not arise for entirely new software modules, and the
project afforded a greater deal of flexibility in the implementation of these.

Over the past decade, many teams of investigators have developed domain-
specific parallelization tools/libraries, but most of these were never intended
for external consumption. Rather than develop yet another suite, the imple-
mentation team decided to select from those that have some public support,
and ultimately chose to use the Earth System Modeling Framework (ESMF),
which was just beginning development but aligned well with several other
activities. In hindsight, this decision was unfortunate and at this time rel-
atively little functionality is obtained from the ESMF. The consequences of
this decision will be discussed in more detail later in this document.

At this time, the MPI implementation of MODELE is able to generate
correct results (i.e. bitwise identical results to those obtained from the serial
build) on multiple architectures. For 2° x 2.5° resolution grids, reasonable
efficiency is obtained through 10’s of processors, and later sections address

the possibility of increasing this scaling even further. Figure 77 shows the
current performance of MODELEon the HP SC45 the SGI Altix.?

Performance of modelE - 1 Month at 2 x 2.5 Degree Resolution

100000 ¢ -
3 M eigen |1
s S PNIToR—
- I Altix -
[SGI ideal -
I | Baseline OpenMP ———— |
10000 -
=z s N :
j == i h -
% : \"—————\—*—””* -
| _
1000 [

100 . | . . .

| 5 _ — 20 25

Number of Processors

Figure 1: Time versus the number of processors for MODELE for the E1F20
(2 x 2.5° resolution) on the HP SC45 (halem) and the SGI Altix (palm). For
comparison the performance of the OpenMP implementation is also shown
for the HP SC45. (OpenMP is restricted to 4 cpus on that architecture.)

2 Message Passing and Domain Decomposi-
tion

Although there are a variety of techniques to exploit parallel computing ar-
chitectures, the technique of domain decomposition has proven to be the
most portable and robust for almost all models which treat partial differ-
ential equations on large computational grids. The principle of domain de-
composition rests on the mathematical foundation that in many instances,
the solution of a set of equations on a given domain can be obtained from
the solution of nearly identical sets of equations on a set of non-overlapping
subdomains with appropriate boundary conditions. An efficient implementa-
tion of such a decomposition on a parallel architecture then simply consists
of assigning each subdomain to a particular processor and adding appropri-

2The recent upgrade of halem has reduced the performance on 30 processors by 20%,
and the ASTG is actively working to restore the performance.

ate, hopefully lightweight, mechanisms to deal with the boundaries between
subdomains.

In terms of software/implementation, a model which exploits domain de-
composition, should closely resemble its serial cousin with hopefully minor
modifications. Typically identical copies of a suitable program are run on
each processor of a parallel architecture but acting on different data. This is
called “Single Program Multiple Data” (SPMD) paradigm. At the very least,
the mechanism which launches the multiple copies of the program must also
provide a means to distinguish which instance is which - usually a routine
which returns an integer index known as the “rank” of the process. By means
of the rank index, logic in the program can determine which subdomains are
to be treated on that processor and which processors contain data required
for handling boundaries.

Subdomains are generally represented by arrays of slightly greater extent
than the actual sudbomain. The extra elements in these arrays are variously
referred to as “halo”, “ghost”, or “guard” region and are used to store copies
of data from neighboring subdomains. Such copies are essential for many
numerical operations, and perhaps best exemplified by the computation of
a first derivative by means of a second order finite-difference stencil. Data
located entirely within the local domain is insufficient for computing such
quantities at the edge of the local domain. In the simplest cases the width of
the halo region is merely 1 element, but for higher-order stencils, deeper halos
can be used. Most paradigms do not provide any mechanism for ensuring
that such copies of data within the halo are consistent with the current
values in the corresponding neighboring subdomain, and, thus, applications
are generally required to determine at which points in the agorithm fresh
copies of data must be obtained from the neighboring subdomain.

2.1 Aside on the Shared-Memory Paradigm

Although the technique of domain decomposition (or more generally divide-
and-conquer) can be applied in many parallel paradigms, it is generally not
necessary within the shared-memory paradigm3. Perhaps the most well-

3The shared-memory paradigm should not be confused with shared-memory architec-
tures. The latter refers to hardware capability to globally address all memory within a
parallel architecture. It is true that such hardware support is beneficial to implementing
the shared-memory paradigm, but it is not in principle necessary. OpenMP can, at least in
theory, be implemented on distributed systems, and message-passsing programs certainly

known and widely used implementation of this paradigm is OpenMP [2]
which extends Fortran and C/C++ with a small set of compiler directives
and an even smaller library. Under the shared-memory paradigm, teams of
execution threads share a global-address space and thereby eliminate the need
to explicitly distribute subdomains in a more-or-less predetermined manner.
A given computational loop can be parallelized by assigning various iterations
to processors. Some care must be taken to avoid simultaneous access to the
same array element, but in general this approach is relatively easy to imple-
ment. Generally scaling of 8-16 processors is readily attained, but extending
the scaling efficiency to larger numbers of processors on existing architec-
tures generally involves carefully aligning work distribution with memory
distribution - a process very similar to domain decomposition. Another ma-
jor liability of the shared-memory approach is that it generally requires that
the compiler be “parallel aware”, thereby reducing portability somewhat due
to the availability of appropriate compilers.

2.2 Aside on MPI - the Message Passing Interface

By far the most portable and widely used interface for supporting paral-
lelism (including but not exclusive to domain decomposition) on distributed-
memory architecures is the standardized Message Passing Interface (MPI)
[8]. The capabilities of MPI include

e Point-to-point communication (sending data from one process to an-
other)

e Creation/management of teams of processes
e Reduction operations (e.g. summing data across a team of processors)

MPI supports the implementation of domain decomposition by providing an
application the means to explictly copy data from neighboring subdomains
into the halo region of the local subdomain. Such operations generally in-
volve both the process providing the data and the process receiving the data,
though MPI-2 introduced the capability for so-called “1-sided” communica-
tions in which only one processor is explicitly involved in the operation. (The
other processor must still be involved, but in a rather indirect sense beyond
the scope of this discussion.)

have been implemented on shared-memory architectures.

Portability of MPI is partly achieved by virtue of the fact that compilers
need not be aware of the parallel environment - all such issues are deferred
to the MPI library. Further, since MPI is actually only an interface, multiple
implementations can and do exist. Many high-end hardware vendors provide
highly optimized MPI implementations that exploit custom aspects of their
interconnect, and at least two widely-ported public domain implementeta-
tions of MPI have been created: MPICH and LAM-MPI.

It should be noted that although MPI is standardized and nearly univer-
sally available, other message-passing interfaces that are still in use today
include the Parallel Virtual Machine (PVM), which preceded MPI, and Cray
SHMEM which offers a simple (albeit somewhat dangerous) interface that
can exploit certain architectures such as those provided by Cray and SGI.

2.3 Aside on ESMF Infrastructure

The Earth Science Modeling Framework (ESMF) has as its goals and require-
ments to simplify and standardize the treatment of all domain decomposi-
tion, communication and synchronization issues by its earth science modeling
components.

Since ESMF is tailored to a particular kind of applications, namely earth
modeling, a lot of the parallelization and grid management details can be han-
dled “behind-the-scene” by the framework. Parallelization is then achieved
by calling the higher level ESMF routines, which themselves are MPI based.

The user calls ESMF routines to create the appropriate grid (e.g. C-
grid), assign a domain decomposition, specify where in the grid cell each
particular distributed array elements are located (e.g. NE corner), as well as
creating objects that contain all details necessary to manage parallel issues for
particular field arrays. Once that infrastructure is in place, ESMF routines
(or their temporary locally provided versions) are available to provide “halo-
updates”, communication of cell data from the neighboring sub-grids, as well
as global sums and other parallel tools.

While the plan is well thought out, at the time of this report not all
the ESMF planned capabilities are yet in place. Those that were missing
and were required for completion of the Distributed Parallelization of the
modelE code have been temporarily implemented by our staff and are to
be considered as such: temporary patches to be used until the more robust
ESMF versions become available.

2.4 Specific Design Choices for modelE

The domain used in MODELE is a three-dimensional grid based upon the
traditional “lat-lon” coordinates on a sphere logically equivalent to a three-
dimensional Cartesian index space. A variety of decompositions are con-
ceivable, but subdomains formed by splitting along each dimension indepen-
dently are sufficiently flexible for most purposes. While a 1D decomposition
is generally easier to implement, it strongly limits the total number of sub-
domains and hence the number of processors that can be exploited. Such
explicit constraints on scalability are known as processor starvation - any
additional computing elements will be idle due to lack of assigned tasks.
A two dimensional decomposition is generally sufficient to avoid starvation
for modest resolutions on existing architectures, and for this reason three-
dimensional decomposition is rarely used. *

During the planning for the creation of an MPI implementation of MOD-
ELE, it was decided to restrict the initial decomposition to one dimension
across latitudes. By avoiding a 2D decomposition, final delivery was proba-
bly shortened by 1-2 months, but at the expense of a larger total investment
if a later decision is made to pursue the 2D decomposition. Figure 2 demon-
strates how subdomains are associated with processing elements, and figure 3
illustrates how halo regions are associated with subdomains.

Naively, one might expect that the best axis along which to place a 1D
decomposition would be the largest dimension, which in the case of MOD-
ELE would be across longitudes. There are 2 important, but subtle, reasons
why such a choice is inferior to distributing across latitudes. First, due to
serial (pipelining/vectorization) considerations, the loops across longitudes
are generally the innermost loops and would become quite short. Such short
innermost loops combined with skips over halo points would be very detri-
mental to serial performance. The second motivation to avoid decomposition
across longitudes is that it effectively reduces the packet size for halo fill op-
erations.

Thus, MODELE has been implemented with a 1D decomposition across
latitudes. Each subdomain includes all longitudes and all levels (heights),
but only a subset of the latitudes. Because MODELE uses a variety of rank

4 Anoter mechanism to avoid starvation implicit in the 1D decomposition is to combine
MPI with OpenMP, allowing OpenMP to manage multiple processors within each MPI
subdomain. This can be particularly effective on some architectures, notably the SGI
Origin series.

R R e e el pre sl e e e

Figure 2: One-dimensional domain decomposition across latitudes for MOD-
ELEusing 5 processes.

Figure 3: Each subdomain is represented by an array which includes both
the interior (yellow points) and additional “halo” regions along the boundary
(red points). Such halo regions are necessary for many types of numerical
computations such as computing North-South derivatives.

permutations for different multidimensional arrays, one cannot simply de-
scribe the subdomain in terms of array slices. However, the most common
case is for global arrays dimensioned as ARR(IM, JM,LM) with the decomposi-
tion affecting only the second rank of the array. Specific details and examples
are provided in later sections.

Another major design choice for the MPI implementation of MODELE is
that of preserving global indices. Many MPI implementations number the
local indices beginning at 1 (or occasionally 0). When a global coordinate is
required in such an implementation a process-dependent offset must be com-
bined with the local index. For a homogeneous domain, there is relatively
little disadvantage for such a choice, and the convention somewhat simpli-
fies some of the bookeeping for subdomains. However, spherical domains
are not homogeneous in the meridonal coordinate (i.e across latitudes). In
particular, special logic for the North and South poles is ubiquitous whithin
MODELE. Other references to the equator and special regions of interest are
less common, but nonetheless present. Our convention maintains direct cor-
respondence between local indices and the global indices so that a given value
of say J is well defined and easily understood independent of the processor
on which the reference is made. E.g. J=1 always refers to the South pole,
and J=JM always refers to the North pole. (One must, of course, still excer-
cise caution since not all processors will have those coordinates within the
bounds of the arrays for which they are responsible.) The major price for
this convention is the fact that the offset in the lower bound is different from
Fortran’s default of “1” and therefore requires awkward specification state-
ments for procedure dummy variables and local arrays. Again, details and
examples are provided in later sections.

3 Data Structures

3.1 The Defalult “Grid” and Creating New Grids

The computational grid is represented as an object of a derived data type
called DIST_GRID. One of the components of the “grid” object is an object
called ESMF_GRID. This has the type ESMF_GRID and it represents the com-
putational domain and the domain decomposition from the perspective of
ESMEF. Therefore, all subroutine calls to the ESMF library routines use this
ESMF_GRID object as an argument. The remaining components of the “grid”

object represent grid parameters such as the number of longitudes, number
of latitudes and various indices of the local domain that is mapped to each
processor. The DIST_GRID derived data type is shown in Figure 4.

TYPE DIST_GRID

TYPE (ESMF_Grid) :: ESMF_GRID
| Parameters for Global domain

INTEGER :: IM_WORLD ! Number of Longitudes

INTEGER :: JM_WORLD ! Number of latitudes

| Parameters for local domain

INTEGER :: J_STRT ! Begin local domain latitude index
INTEGER :: J_STOP ! End local domain latitude index
INTEGER :: J_STRT_SKP ! Begin local domain exclusive of S pole
INTEGER :: J_STOP_SKP ! End local domain exclusive of N pole
INTEGER :: ni_loc ! for transpose

I Parameters for halo of local domain

INTEGER :: J_STRT_HALO ! Begin halo latitude index

INTEGER :: J_STOP_HALO ! End halo latitude index

| Parameters for staggered "B" grid

I Note that global staggered grid begins at "2".

INTEGER :: J_STRT_STGR ! Begin local staggered domain

INTEGER :: J_STOP_STGR ! End local staggered domain

I Controls for special cases

LOGICAL :: HAVE_SOUTH_POLE ! South pole is in local domain

LOGICAL :: HAVE_NORTH_POLE ! North pole is in local domain

LOGICAL :: HAVE_EQUATOR ! Equator (JM+1)/2 is in local domain

END TYPE DIST_GRID

TYPE (DIST_GRID) :: GRID

Figure 4: The DIST_GRID derived type.

A grid is created by a call to the subroutine INIT_GRID. This subroutine
calls ESMF library routines to allocate the grid and initializes components
of the “grid” object. Figure 5 describes the INIT_GRID subroutine and the
meaning of each argument:

10

INTERFACE:
SUBTOUTINE INIT_GRID(grid, IM, JM, LM, width, VM)
ARGUMENTS :
INTEGER, INTENT(IN) :: IM, JM, LM
TYPE (DIST_GRID), INTENT(INOUT) :: grid
TYPE (ESMF_VM), INTENT(IN), Target, Optional :: vm
INTEGER, OPTIONAL :: width

MEANING of AGRUMENTS:

IM - Number of Longitudes

JM - Number of latitudes
LM - Number of vertical levels
VM - An ESMF related variable called the Virtual Machine. This variable

is an abstraction of the parallel computer.
width - Width of the ghost regions

Figure 5: The INIT_GRID subroutine and the meaning of each argument.

11

3.2 Allocating arrays

In the previous version of MODELE statically declared arrays were used to
store physical quantities such as U and T. Although such globally-dimensioned
arrays could be used in a distributed-memory setting, they would be very
wasteful of memory and could be misleading for array references outside of the
local domain. In the new distributed-memory implementation of MODELE
such array quantities are instead dynamically allocated with the Fortran
ALLOCATE statement. As an example consider the declaration of U in the
previous and current releases:

Previous:
REAL*8, DIMENSION(IM,JM,LM) :: U
New:
REAL*8, ALLOCATABLE, DIMENSION(:,:,:) :: U

The actual bounds for U are established during the initialization phase of
modelE:

ALLOCATE(U(IM,J_OH:J_1H,LM))

where J_OH (=J_STRT_HALO) and J_1H (=J_STOP_HALO) are quantities that
specify the extent of the (haloed) local domain which are to be extracted from
the relevant “grid” data structure. All local extents are determined by mak-
ing a call to the subroutine GET(). This subroutine takes a “grid” object
as an input argument and several optional output arguments corresponding
to the requird local indices of the grid. For the sake of clarity, we adopted
the convention of grouping all allocation statements from a Fortran mod-
ule into a separate allocation subroutine. Thus most Fortran modules hava
an associated allocation subroutine. Each of the allocation subroutines is
called at initialization by a single top level routine, ALLOC_DRV, to create
appropriately sized arrays. Figure 7 below shows an excerpt from subroutine
ALLOC_MODEL_COM, which is responsible for allocating the module variables
used by the MODEL_COM module. A call to GET() at the beginning of each of
these routines is used to extract the latitude indices from the “grid” object
and assign those values to local variables. Note that since virtually all arrays
eventually require references to halo regions, the convention is to allocate
arrays to include the halo region.

Figure 6 describes the interface of the subroutine GET() and its argu-
ments.

12

INTERFACE:

SUBROUTINE GET(grid, J_STRT, J_STOP, J_STRT_HALO, J_STOP_HALO,

& J_STRT_SKP, J_STOP_SKP,

& J_STRT_STGR, J_STOP_STGR,

& HAVE_SOUTH_POLE, HAVE_NORTH_POLE)
ARGUMENTS:

TYPE (DIST_GRID), INTENT(IN) :: grid

INTEGER, OPTIONAL :: J_STRT, J_STOP

INTEGER, OPTIONAL :: J_STRT_HALO, J_STOP_HALO
INTEGER, OPTIONAL :: J_STRT_SKP, J_STOP_SKP

INTEGER, OPTIONAL :: J_STRT_STGR, J_STOP_STGR
LOGICAL, OPTIONAL :: HAVE_SOUTH_POLE, HAVE_NORTH_POLE

MEANING of AGRUMENTS:

Figure 6: Interface of the subroutine GET() and its arguments. The meaning
of arguments is explained in Figure 4.

13

SUBROUTINE ALLOC_MODEL_COM(grid)
lI@sum To allocate arrays whose sizes now need to be determined at
1o+ run time
l@auth NCCS (Goddard) Development Team
l@ver 1.0
USE DOMAIN_DECOMP, ONLY : DIST_GRID
USE RESOLUTION, ONLY : IM,JM,LM
USE MODEL_COM, ONLY : NTYPE
USE MODEL_COM, ONLY : ZATMO,HLAKE,FLAND,FOCEAN,FLICE,FLAKEO,
* FEARTH,WFCS,P,U,V,T,Q,WM,FTYPE
USE ESMF_CUSTOM_MOD, ONLY: modelE_grid
USE ESMF_CUSTOM_MOD, ONLY: ESMF_CELL_SFACE
USE ESMF_CUSTOM_MOD, ONLY: ESMF_CELL_CENTER

IMPLICIT NONE
TYPE (DIST_GRID), INTENT(IN) :: grid

INTEGER :: rc

INTEGER :: J_1H, J_OH
INTEGER :: IER

LOGICAL :: init = .false.

If (init) Then

Return ! Only invoke once
End If
init = .true.

CALL GET(grid, J_STRT_HALO=J_OH, J_STOP_HALO=J_1H)

ALLOCATE(P(IM,J_OH:J_1H), STAT = IER)
ALLOCATE(U(IM,J_OH:J_1H,LM), STAT = IER)

ALLOCATE(V(IM,J_OH:J_1H,LM), STAT = IER)
ALLOCATE(T(IM,J_OH:J_1H,LM), STAT = IER)
ALLOCATE(Q(IM,J_OH:J_1H,LM), STAT = IER)

END SUBROUTINE ALLOC_MODEL_COM

Figure 7: Subroutine ALLOC_MODEL_COM.

14

3.3 Declaring dummy arrays and local arrays

On those occasions when an array is used as a dummy variable for a pro-
cedure, care must be taken to ensure that it is declared in a manner which
reflects the underlying domain decomposition. Unfortunately, the default
lower bound for Fortran is 1, which interferes with the scheme to use global
indices. Furthermore, Fortran prohibits invoking user-defined procedures in
declaration statements, which in turn forces us to make explicit references to
the components of the GRID object®.

Before:
REAL*8 :: dum_argument(:,:,:)
After
REAL*8 :: dum_argument(:,GRID}%J_STRT_HALO:,:)

This is visually unappealing, but functional.

Purely local arrays can be declared in precisely the same manner as that of
the global arrays as discussed in the previous section. Alternatively, Fortran
automatic arrays can be used as in:

REAL*8 :: local_array(IM,GRID}%J_STRT_HALO:GRID’J_STOP_HALO,LM)

If allocatable arrays are used, developers are encouraged to use an explicit
DEALLOCATE statement to restore memory®.

4 Distribution of Parallel Work

4.1 Determining Local Extents and Halos

Distributed memory parallelization through domain decomposition has been
implemented only for the latitude direction, and therefore primarily impacts
loops over the latitude index J. Each process must determine what range of
J values are to be handled locally during a given computation. Complicating
factors include special logic for treating coordinates near the poles and also

5In general, the ASTG attempts to avoid dangerous coding practices such as global
quantities, but in this instance convenience and consistency with existing MODELE prac-
tices was an overriding concern.

6For unsaved allocatable arrays, the Fortran95 standard implies that such quantities
are automatically deallocated upon exit of the routine. It is nonetheless a good practice
to make this operation explicit.

15

for working with quantities that are located on the staggered grid. By using
local indices accessed through the GET() interface discussed in the previous
section, developers can clearly indicate the appropriate bounds for the local
subdomain and control whether to execute pole specific operations (via the
HAVE_NORTH_POLE and HAVE_SOUTH_POLE logical flags.

4.2 Modifying Loops over Latitudes

Standard loops The standard computational grid spans from the South
pole (J=1) to the North pole (J=JM), implying the same span for the loops
that apply logic to the entire computational domain. In the parallel context,
the local lower and upper bounds of such loops can be obtained via the
J_STRT and J_STOP bounds respectively. For the process which includes the
South pole in its subdomain, J_STRT=1 for the process which possesses the
North pole J_STOP=JM.

Treatment of North and South poles In some cases, the logic in MOD-
ELE mandates that a loop applies everywhere except at the poles, usually
followed by special operations that apply only at the poles. In the serial
case, such loops range from J=2 (one latitude north of the south pole) to
JM-1 (one latitude south of the north pole). For this case, the local J range
for computation as defined in the GRID variable is J_STRT_SKP for the be-
gining J and J_STOP_SKP for the end J. If the south pole is present in the
local sub-domain,, J_STRT_SKP is equal to 2, if the north pole is present,
J_STOP_SKP is equal to JM-1.

To determine whether to apply a pole-specific operation, developers can
use the HAVE_NORTH_POLE and HAVE_SOUTH_POLE flags as returned by the
GET() interface.

Staggered grids Some operations apply to quantities on the so-called
“staggered” grid, and thus have J ranging from 2 to JM. For these cases, the
local J range for computation as defined in the GRID variable is J_STRT_STGR
for the begining J and J_STOP_STGR for the end J. If the south pole is present
in the local sub-domain, J_STRT_STGR is equal to 2, if the north pole is
present, J_STOP_STGR is equal to JM.

16

In all of the above three cases, one could call the subroutine GET() to
extract the relevant begining and end J’s. Throughout this MPI implemen-
tation of modelE, the calling sequence for subroutine GET follows the format
of the following example:

CALL GET(grid, J_STRT = J_0, J_STOP = J_1,
& J_STRT_SKP = J_0S, J_STOP_SKP = J_18S,
& J_STRT_STGR = J_OSTG, J_STOP_STGR = J_1STG)

and the local J range indices take abreviated names, such as

J_0 , J_1 for "Standard loops"
J_0s , J_18 for "Skipping poles"
J_OSTG, J_1STG for "Staggered grid"

The rationale for using the aliases for the begining and end J’s was to
reduce the number of characters used in specifying loop bounds and to make
it easy to globally replace loop bounds if there is ever a need to do so.

It should be noted that for process not doing the south pole,

J_0 = J_0S = J_OSTG
Likewise, for processes not doing the north pole,

J_1 =J_15 = J_158TG

4.2.1 Unusual Bounds

There are places where the J loop ranges do not fall into any of the categories
described so far. Such places are handled locally on a case-by-case basis using
the following general approach:

If the starting J value in the original sequential code is some_start_jvalue
that is NOT equal to one of J_0, J_0S and J_O0STG, then the equivalent start-
ing J value in the parallel code is MAX(J_parallel,some_start_jvalue)
where J_parallel is one of J_0, J_0S, J_OSTG and even J_STRT_HALQ de-
pending on how the J range in the sequential code is defined. Likewise, if the
end J value in the original sequential code is some_end_jvalue that is NOT
equal to one of J_1, J_1S and J_1STG, then the equivalent end J value in the
parallel code is MIN(J_parallel,some_end_jvalue) where J_parallel is
one of J_0, J_0S, J_OSTG and J_STOP_HALO depending on how the J range
in the sequential code is defined. Some examples are:

17

ATMDYN.f (around line 662)

Original: do 2035 j=3,jm-1

Parallel: do 2035 j=max(J_0S,3), J_1S
CLOUDS2_DRV.f (around line 1193)

Original: DO J=J5S5,J5N

Parallel: DO J=MAX(J_0,J5S),MIN(J_1,J5N)

LAKES.f (around line 561)
Original: DO J=1,JM
Parallel: DO J=MAX(1,J_0-1) ,MIN(JM,J_1+1)

A more exhaustive list of these special cases are shown in Appendix A.

Remark 1 LAKES.f special note: Unusual loop bounds are employed to ac-
count for filling and using “halo” cells for KDIREC, IFLOW and JELOW.
This became necessary to meet the need of “halo” for these variables resulting
from domain decomposition.

4.3 Special Issues

4.3.1 Stopping the Parallel Code

The sequential code was equipped with subroutine stop_model to cleanly exit
a run upon meeting some condition. This subroutine has been augmented
with an option to cleanly exit a parallel run as well upon meeting the same
condition. The original sequential code snippet is

if (retcode > 13 .and. dump_core > O) then
call sys_abort

else
call exit_rc (retcode)

endif

The augmented code snippet is

if (retcode > 13 .and. dump_core > O) then
#ifdef USE_ESMF

18

call mpi_abort(MPI_COMM_WORLD, retcode,iu_err)
#else
call sys_abort
#endif
else
#ifdef USE_ESMF
call mpi_finalize(mpi_err)
#endif
call exit_rc (retcode)
endif

4.3.2 Random Number Generator

ModelE uses a random number generator function (RANDU). RANDU is
called from within a J loop a different number of times, depending on the
value of J. In a parallel implementation this causes the local count of calls
to RANDU, and thus the random number seed sequence, to fall out of sinch
with the count on the serial implementation. In turn, the seed mismatch
impacts the bit-wise reproducibility of the parallel and sequential codes. In
order to ensure consistent and bitwise reproducible results by the parallel
implementation, the number of times random numbers are burnt (by calling
the function RANDU), is kept uniform in all processes, and identical to that
in the sequential code. This is achieved by forcing each local loop to burn
as many random numbers as a global loop would, but only storing them for
the appropriate I and J values.

The following example (from RAD_DRV.f around line 1120) illustrates
this process::
Sequential code

DO J=1,JM I complete overlap
DO I=1,IMAXJ(J)
RDMC(I,J) = RANDU(X)
END DO
END DO

Parallel code

N_BURN = SUM(IMAXJ(1:J_0-1))
CALL BURN_RANDOM(N_BURN)

19

DO J=J_0,J_1 I complete overlap
DO I=1,IMAXJ(J)
RDMC(I,J) = RANDU(X)
END DO
END DO

N_BURN = SUM(IMAXJ(J_1+1:JM))
CALL BURN_RANDOM (N_BURN)

By default, the BURN_RANDOM () routine simply invokes RANDU() multiple
times to guarantee an identical sequence of random numbers on all proccesses.
In some instances, when the algorithm for RANDU() is known and of a certain
form (e.g. linear-congruential random number generators), BURN_RANDOM ()
can be implemented to efficiently skip an entire sub-sequence of random
numbers. At this time, an efficient implementation for BURN_RANDOM() exists
on halem by virtue of reverse engineering the system provided RAN() random
number generator.

4.3.3 Serialized Operations

In certain instances, it becomes necessary to serialize operations on dis-
tributed arrrays. The places where such operations are performed are usually
surrounded by calls to a variety of PACK (to gather data) and UNPACK (to scat-
ter data) routines. Moreover, in some cases, the distributed arrray is given
the name VAR_loc and the corresponding global array is given the name VAR
where VAR in both cases is the array of interest e.g. AIJ. In other cases,
the distributed array is given the name VAR and the corresponding global
array is given the name VAR_glob. The usage in both situations depend
on context. For diagnsotic variables defined primarily in DIAG_COM.f and
TRDIAG_COM.f , the former definition i.e. VAR_loc/VAR is used. However,
other modules/subroutines that use DIAG_COM and TRDIAG_COM modules re-
name VAR_loc to VAR for their own local uses so that VAR will locally remain
distributed. Examples abound in the code. A few are given here:

ATMDYN. £
USE DIAG_COM, only : ajl=>ajl_loc,jl_dudtsdrg

ATURB.f

20

USE TRDIAG_COM, only: tajln=>tajln_loc, jlnt_turb

5 Communication

5.1 The Halo Methodology

The term “Halo” refers to grid data that could be required by one proces-
sor but resides on a different processor. In finite difference models, such as
modelE; the most common need is in providing nearest neighbor data for the
update of array cells at the sub-domain boundary. It is common practice to
allocate memory for a layer of halo cells surrounding the sub-domain bound-
ary. The halo cells purpose is to cache the necesary data from neighboring
sub-domains for the update of sub-domain boundary cells. The approach
streamlines the communication process and makes for ”cleaner” code where
sub-domain boundary cells require no ”special treatment”. In the ESMF
version of modelE, a single cell wide halo surrounds each sub-domain. In
order to insure that only up to date halo data is accessed, the halo region is
updated prior to any loop or statement that uses it. The halo region update
is acomplished by calling the subroutine HALO_UPDATE. There are three over-
loaded versions of this subroutine. Each accomodates different array index
order. Overloading covers different data type, as well as array dimension.
Figure 4 shows the interface to this subroutines and their arguments from
the perspective of a user.

INTERFACE:
SUBROUTINE HALO_UPDATE(grid, array, direction)
SUBROUTINE HALO_UPDATEj(grid, arrayJ, direction)
SUBROUTINE HALO_UPDATE_COLUMN(grid, arrayColumn, direction)
ARGUMENTS:
TYPE (DIST_GRID), INTENT(IN) :: grid

INTEGER, OPTIONAL, INTENT(IN) :: direction

21

The "variables" array, arrayJ, and arrayColumn are multi-dimesional with type
integer or real depending on the context it is used.

MEANING of ARGUMENTS:

grid -‘‘grid’’ object

array -The local array that is being updated -- (J), (I,J), or (I,J,K)

arrayJ -The local array that is being updated -- (J,M)

arrayColumn -The local array that is being updated -- (M,J),M,I,J),M,I,J,K)

direction -By default all halo regions for a given subdomain are updated.
options include "NORTH" and "SOUTH" to selectively fill specific
sections.

Thus, whenever a loop block references a variable with a “j+1” index
or “j-1”7 index, a call to Halo_Update must be made before the loop block
to fetch the “Halo” data for the variable from its neighbor processor in the

“north” or “south” direction. Following is a simple example from the source
file TQUS_DRV .f that demonstrates the use of a HALO_UPDATE.

CALL HALO_UPDATE(grid, MV, FROM=NORTH)
DO L=1,LM
DO J=J_OH,J_1S
DO I=1,IM
MV(I,J,L) = MV(I,J+1,L)*DT
END DO
END DO
IF (HAVE_NORTH_POLE) MV(:,JM,L) = O.
END DO

In this example, the loop block references the variable MV (I,J+1,L). For
J=J_1S, J+1 will correspond to a halo cell in at least one sub-domain. There-
fore, each processor makes a call to HALO_UPDATE to fetch the Halo data
from its neighbor to the North. If the loop block had a reference to MV(I, J-1,
L) instead, the optional argument “FROM” in the call to HALO_UPDATE
will be equal to SOUTH indicating that the data is fetched from the neigh-
bor processor to the South. Similarly, if the loop block references both

22

cases, the optional “FROM” argument is set to “NORTH+SOUTH” and
the HALO_UPDATE subroutine is designed to make two calls to fetch the
Halo data from both the North and the South neighbors.

5.2 GlobalSum

The Globalsum subroutine call is used to compute the sum of the elements
of an array. Different variants of the subroutine Globalsum are provided
using overloading in order to support different data types, arrays of different
dimensions and to compute the sum of a two or three dimensional array in
a given dimension. Therefore, the role played by the Globalsum subroutine
in the parallel implementation is similar to that of the Fortran 90 intrinsic
function “sum” in the serial implementation. Following is a description of the
interface of the Globalsum subroutine and its arguments from the perspective
of a user.

INTERFACE:
SUBROUTINE GLOBALSUM(grid, array, gsum, hsum, zsum, istag, iskip, jband, all)

ARGUMENTS:
TYPE (DIST_GRID), INTENT(IN) :: grid
REAL*8, INTENT(IN) :: array(...)
REAL*8, INTENT(OUT):: gsum(...), hsum(...), zsum(...)
INTEGER,OPTIONAL, INTENT(IN) :: istag, iskip, all
INTEGER,OPTIONAL, INTENT(IN) :: jband(2)

MEANING of ARGUMENTS:

grid - ‘‘grid’’ object

array - The local array

gsum - Global sum

hsum, zsum - Auxiliary sums (explained later)

istag - Flag to indicate staggered grids

iskip - Flag to indicate skipping of poles

all - Flag to indicate that all processors need the global
sum instead of only the root processor

jband - Array to indicate the range of latitudes to be added.

23

In the parallel case, the global sum is computed by gathering the dis-
tributed array to the root processor and by having the root processor perform
the sum of the elements of the global array as required by the implementation.
For example, the root processor may compute the sum of all the elements
of the global array in case of a full reduction operation resulting in a scalar
output, or it may compute the sum along a given dimension (such as the
latitude) resulting in an output array of rank 1 less than the input array.
Performing the global sum in this manner is not very efficient but it is nec-
essary in order to guarantee bit-wise agreement with the serial code results.
It also allows for the relatively simple handling of various special cases, such
as skipping poles, staggered grids, "pole first”, hemisphere sums, and zsum.

In case of skipping poles (denoted by the optional “iskip” argument to
the subroutine), data at the poles are excluded when computing the global
sum because the index for the latitude varies from 2 to JM-1. Staggered grids
(denoted by the optional istag argument to the subroutine) are also easily
handled because we simply need to consider the latitude ranges from 2 to JM
when summing up the elements of the global array. The arguments, zsum
and hsum denote some auxiliary sums that are computed by the globalsum
subroutine. The “zsum” represents the local sum of the input array along the
longitude. Hsum denotes the “Hemisphere sum”. When computing Hsum,
the sum of the input array is first computed along the longitude. Depending
on the input, this results in an intermediate array of size JM or JM x LM
where JM denotes the number of latitudes and LM denotes the number of
vertical levels. The Hemisphere sum is the sum of the first and second halves
of this array along the latitude and is an array of size 2 or 2 x LM. Another
important case is unusual bounds for the latitudes where the globalsum is
computed on a small range of the latitude indices. This case is handled via
the optional argument “jband” - a rank 2 array that denotes the lower and the
upperbound of the latitude. Once the array is gathered to the root processor,
this case is easily handled by just computing the sum of the elements in the
required latitude range. Finally, in some instances, the global sum may be
required by all the processors instead of just the root processor. This case
is denoted by the optional argument “all” to the subroutine. It requires an
extra communication step because the root processor has to send the final
output to all the processor by means of a broadcast operation.

In the process of parallelization, recognizing where a global sum operation
is required is sometimes much less than obvious. Following is a section of
code from the serial source file, SURFACEL.f. The parallel version of this

24

code section will require a global sum operation it accumulates boundary
layer diagnostics into variables ADIURN and HDIURN.

IF(MODDD.EQ.0) THEN
DO KR=1,NDIUPT
IF(DCLEV(IJDD(1,KR),IJDD(2,KR)).GT.1.) THEN
ADIURN (IH,IDD_DCF,KR)=ADIURN(IH,IDD_DCF,KR)+1.
ADIURN(IH,IDD_LDC,KR)=ADIURN(IH,IDD_LDC,KR)
* +DCLEV(IJDD(1,KR),IJDD(2,KR))
HDIURN (IHM, IDD_DCF,KR)=HDIURN (IHM,IDD_DCF,KR)+1.
HDIURN (IHM, IDD_LDC,KR)=HDIURN (IHM,IDD_LDC,KR)
* +DCLEV(IJDD(1,KR),IJDD(2,KR))
END IF
END DO
END IF

In the parallel implementation, each processor accumulates a partial sum
of the DCLEV variable into a temporary array. Then a global sum is pe-
formed on the temporay array. Finally, the root processor adds the global
sum to the variables ADIURN and HDIURN. Following is how this piece of

code is implemented in the parallel case.

IF(MODDD.EQ.O) THEN
DIURN_partb = 0

DO KR=1,NDIUPT
I = IJDD(1,KR)
J = IJDD(2,KR)
IF ((J >= J_0) .AND. (J <= J_1)) THEN
IF(DCLEV(I,J).GT.1.) THEN
tmp(1)=+1.
tmp (2)=+DCLEV (I, J)
DIURN_partb(:,J,KR)=DIURN_partb(:,J,KR)+tmp(1:2)
END IF
END IF
END DO

CALL GLOBALSUM(grid, DIURN_partb, DIURNSUMb)

25

IF (AM_I_ROOT()) THEN
ADIURN (ih,idx3,:)=ADIURN(ih,idx3, :) + DIURNSUMD
HDIURN (ihm,idx3, :)=HDIURN(ihm,idx3,:) + DIURNSUMb

END IF

END IF

5.3 Input and Output
5.3.1 Messages to STDOUT

The majority of the ASCII output goes to STDOUT (Unit 6, 0, or *). There
is some ASCII output that goes to other file units, such as 67 and 99. ASCII
output is currently handled either by the overloaded routine WRITE_PARALLEL
in DOMAIN_DECOMP.f or by the regular Unix “write” and “print” statements.
The routine WRITE_PARALLEL forces only the root process to write. The fu-
ture plan is to replace all “write” and “print” statements with WRITE_PARALLEL,
paying special attention to situations where the output data is not local to
the root process. The interface to WRITE_PARALLEL DIMAIN_DECOMP is

interface
module
module
module
module
module
module

WRITE_PARALLEL

procedure
procedure
procedure
procedure
procedure
procedure

end interface

WRITE_PARALLEL_INTEGER_O
WRITE_PARALLEL_INTEGER_1
WRITE_PARALLEL_REAL8_O
WRITE_PARALLEL_REALS8_1
WRITE_PARALLEL_STRING_O
WRITE_PARALLEL_STRING_1

where the name of each module procedure is suggestive of the type of data to
be written. For example, WRITE_PARALLEL_INTEGER_O is called to write an
integer scalar, WRITE_PARALLEL_REAL8_1 is called to write a one-dimensional
real array, etc. The module procedures have the same calling sequence ex-
emplified by WRITE_PARALLEL_INTEGER_O as shown below:

subroutine WRITE_PARALLEL_INTEGER_O (data, UNIT, format)

26

INTEGER, intent(in) :: data
integer, intent(in), optional :: UNIT
character (len=%), intent (in), optional :: format

Of course, the type declaration for data will be consistent with the type of
the actual argument as guaranteed by the interface WRITE_PARALLEL. If UNIT
is not present, the default is STDOUT. If format is not present and the output
is intended to be ASCII, the default is to use list-directed output (i.e. use an
asterisk (*) instead of an explicit format specification.

5.3.2 File based I/0 of distributed quantities

Distributed arrays are usually written to or read from binary files. The file

unit is given by variable kunit. For output, the appropriate overloaded rou-

tine PACK_DATA, PACK_COLUMN, PACK_DATAj or PACK_BLOCK from DOMAIN_DECOMP. f
is called to gather the distributed array into the global array at the root pro-

cess which then writes the data. For input, the root process reads the global
array and then the appropriate overloaded routine UNPACK_DATA, UNPACK_COLUMN,
UNPACK_DATAj or UNPACK_BLOCK from DOMAIN_DECOMP.f is called to scatter

the data to all processes. For the sake of brevity, PACK_DATA will hence-
forth imply PACK_DATA, PACK_COLUMN, PACK_DATAj and PACK_BLOCK. Like-
wise UNPACK_DATA will henceforth imply UNPACK_DATA, UNPACK_COLUMN, UNPACK_DATAj
and UNPACK_BLOCK. The interfaces for the PACK_DATA and the UNPACK_DATA
routines are defined as follows:

l@var PACK Generic routine to pack a global array
6+ with the data from the corresponding distributed array.

PUBLIC :: PACK_DATA

interface PACK_DATA
module procedure PACK_1D (1)
module procedure PACK_2D (1,3
module procedure LPACK_2D (1,3
module procedure PACK_3D P (i,j,1)
module procedure IPACK_3D P (i,3,1)
module procedure PACK_4D P (i,j,1,m)

end interface

27

lQvar
10+

lQvar
10+

lQvar
10+

PUBLIC :: PACK_DATAj

interface PACK_DATAj
module procedure PACKj_2D (j,k)
module procedure PACKj_3D ' (j,k,1)
module procedure PACKj_4D ' (j,k,1,m)

end interface

PACK_COLUMN Generic routine to pack a global array
with the data from the corresponding distributed array.
PUBLIC :: PACK_COLUMN

interface PACK_COLUMN

module procedure PACK_COLUMN_1D ! (k, j)
module procedure PACK_COLUMN_2D ! (k,i,j)
module procedure PACK_COLUMN_i2D ! (k,i,j)
module procedure PACK_COLUMN_3D ! (k,i,j,1)

end interface

PACK_BLOCK Generic routine to pack a global array
with the data from the corresponding distributed array.
PUBLIC :: PACK_BLOCK
interface PACK_BLOCK
module procedure IPACK_BLOCK_2D P (k,1,i,j)
module procedure PACK_BLOCK_2D ' (k,1,i,j)
module procedure PACK_BLOCK_3D ro(k,1,i,j,m

end interface

UNPACK Generic routine to unpack into a distributed
data from the corresponding global array.
UNPACK_DATA
UNPACK_DATA

array the
PUBLIC ::
interface
module
module
module
module
module
module

procedure
procedure
procedure
procedure
procedure
procedure

end interface

UNPACK_1D
UNPACK_2D
LUNPACK_2D
UNPACK_3D
TUNPACK_3D
UNPACK_4D

28

(1)

(i,3)
(i,3)
(i,j,D)
(i,j,D
(i,j,1,m)

PUBLIC :: UNPACK_DATAj
interface UNPACK_DATAj

module procedure UNPACKj_2D ' (j,k)
module procedure UNPACKj_3D ' (j,k,1)
module procedure UNPACKj_4D ' (j,k,1,m)

end interface

l@var UNPACK_COLUMN Generic routine to unpack into a distributed
@+ array the data from the corresponding global array.

PUBLIC :: UNPACK_COLUMN

interface UNPACK_COLUMN

module procedure UNPACK_COLUMN_1D ! (k, j)
module procedure UNPACK_COLUMN_2D ! (k,i,j)
module procedure IUNPACK_COLUMN_2D ! (k,i,j)
module procedure UNPACK_COLUMN_3D ! (k,i,j,1)

end interface

l@var UNPACK_BLOCK Generic routine to unpack into a distributed
@+ array the data from the corresponding global array.

PUBLIC :: UNPACK_BLOCK

interface UNPACK_BLOCK

module procedure IUNPACK_BLOCK_2D ' o(k,1,i,j)
module procedure UNPACK_BLOCK_2D P o(k,1,i,j)
module procedure UNPACK_BLOCK_3D I (k,1,i,j,m)

end interface

The comment at the end of each module procedure name signifies the
dimension and the storage sequence of arrays that the procedure is used
for. In all of them, index j is the distributed one. All PACK_DATA module
procedures have the same calling sequence, and all UNPACK_DATA module
procedures have the same calling sequence. for the PACK_DATA procedures is
exemplified by PACK_1D as shown below:

SUBROUTINE PACK_1D(grd_dum,ARR,ARR_GLOB)
IMPLICIT NONE
TYPE (DIST_GRID), INTENT(IN) :: grd_dum

29

REAL*8, INTENT(IN)
& ARR(grd_dum%j_strt_halo:)
REAL*8, INTENT(OUT) :: ARR_GLOB(grd_dum}JM_WORLD)

The calling sequence for the UNPACK_DATA procedures is exemplified by
PACKj_3D as shown below:

SUBROUTINE UNPACKj_3D(grd_dum,ARR_GLOB,ARR,local)
IMPLICIT NONE
TYPE (DIST_GRID), INTENT(IN) :: grd_dum

REAL*8, INTENT(IN) :: ARR_GLOB(:,:,:)
REAL*8, INTENT(OUT)
& ARR(grd_dumjj_strt_halo:,:,:)

LOGICAL, OPTIONAL :: local

Of course, the type declaration for ARR and ARR_GLOB will be consistent with
the type of the actual argument as guaranteed by the interface PACK_DATA
and UNPACK_DATA. Those whose names begin with I are for cases where ARR
and ARR_GLOB are integer arrays while those whose names begin with L are
for cases where ARR and ARR_GLOB are logicals. The rest without I or L are for
real*8 arrays. For UNPACK_DATA, the extra optional argument local is used
for the case where ARR_GLOB is already available in each process’s memory
so that the unpacking operation is reduced to each process just copying its
own portion of ARR_GLOB into ARR.

5.4 Distributed transpose

A distributed transpose subroutine (TRANSP) was added to the MPI par-
allel code to facilitate parallelization of subroutine TRIDIAG. In the original
sequential code, subroutine TRIDIAG was used to solve tridiagonal matrix
equations along I (longtitude) for each J (latitude) or along J for each I.
After parallelization, for the former case, all information required to solve
for each J is still available in the local memory of the process to which that
J belongs. In the latter case however, the information required for each I

30

become distributed. To handle the latter case efficiently where all processes
will be engaged with each process solving the matrices for one or morel’s
independently, we rewrote the existing TRIDAG.f to now contain a module
called TRIDIAG_MOD instead of just subroutine TRIDIAG. The new module
has an overloaded interface called TRIDIAG_NEW. This interface provides ac-
cess to module procedure TRIDIAG (exactly the same as the original sub-
routine TRIDIAG) for handling the former case and a new module procedure
TRIDIAG_2D_DIST for handling the latter case. The interface TRIDIAG_NEW
looks like

Interface Tridiag_new

Module Procedure tridiag

Module procedure tridiag_2d_dist
End Interface

The module procedures TRIDIAG and TRIDIAG_2D_DIST have the follow-
ing argument lists

SUBROUTINE TRIDIAG(A,B,C,R,U,N)
'@sum TRIDIAG solves a tridiagonal matrix equation (A,B,C)U=R
I@auth Numerical Recipes

l@ver 1.0
IMPLICIT NONE
INTEGER, INTENT(IN):: N lQvar N dimension of arrays

REAL*8, INTENT(IN) :: A(N) l@var A coefficients of u_i-1
REAL*8, INTENT(IN) :: B(N) l@var coefficients of u_i
REAL*8, INTENT(IN) :: C(N) |@var coefficients of u_i+1
REAL*8, INTENT(IN) :: R(N) |@var RHS vector

REAL*8, INTENT(OUT):: U(N) |@var solution vector

o ™ QW

SUBROUTINE TRIDIAG_2D_DIST(A_dist, B_dist, C_dist, R_dist,
& U_dist,grid, j_lower, j_upper)
'@sum TRIDIAG solves an array of tridiagonal matrix equations (A,B,C)U=R
l@auth Numerical Recipes
l@ver 1.0
USE DOMAIN_DECOMP, ONLY : DIST_GRID
USE DOMAIN_DECOMP, ONLY : TRANSP
IMPLICIT NONE

31

Type (DIST_GRID), Intent(IN) :: grid

REAL*8, INTENT(INOUT) :: A_dist(:,grid%j_strt_halo:
REAL*8, INTENT(INOUT) :: B_dist(:,grid%j_strt_halo:
REAL*8, INTENT(INOUT) :: C_dist(:,grid%j_strt_halo:
REAL*8, INTENT(INOUT) :: R_dist(:,grid)j_strt_halo:
REAL*8, INTENT(OUT) 11 U_dist(:,grid%j_strt_halo:
INTEGER, INTENT(IN) :: J_LOWER, J_UPPER

N N N N

Briefly described, TRIDIAG_2D_DIST generates a distributed transpose
of each of the 2D arrays (matrices) before solving. This insures that all
the data necesary for solution for a give I is local. The tridiagonal solution
algorithm at this point is identical to the TRIDIAG routine. The final step
is to perform a reverse distributed transpose of the solution. The following
example illustrates how TRIDIAG_2D_DIST works. We assume the following:

IM=5 and JM=3 for the global horizontal

Number of processes = 2 with ranks O and 1

Process 0 holds J=1:2; process 1 holds J=3:3

The desired solution vector is dimensioned U(5,3)

The coefficient matrices are dimensioned A(5,3), B(5,3) and C(5,3)
The right hand side is dimensioned R(5,3)

The distributions of the matrices between the two processes are:

Process 0: A(1:5,1:2), B(1:5,1:2), C(1:5,1:2), R(1:5,1:2), U(1:5,1:2)
Process 1: A(1:5,3:3), B(1:5,3:3), C(1:5,3:3), R(1:5,3:3), U(1:5,3:3)

The global representations of the matrices are:

b1l b12 b13
b21 122 123
b31 132 b33 |,
b4l b42 b43
b51 b52 b53

all
a2l
a3l
a4l
adl

al2
a22
a32
a4?
ad2

ald
a23
a3ld |,
a43
ad3

cll
c21
c31
c41
chl

cl2
c22
c32
c42
cH2

cl3
c23
c33 |,
c43
cH3

rll
r21
r3l
r4l
rol

rl2
r22
r32
r42
r52

rl3
r23
r33 |,
r43
rd3

32

ull
u21
u3l
u4l
ud1

ul2
u22
u32
u42
ud2

ul3
u23
u33
u43
ud3

Distribution along J to the two processes is indicated by dotted lines as shown
below:

Proc 0 1 0 1
A = a1l al2 | al3 B = b1l bi12 | b13
a2l a22 | a23 b21 Db22 | b23
a3l a32 | a33 b31 b32 | b33
a4l a42 | a43 b4l bd2 | b43
abl ab2 | ab3 b51 b52 | b53
Proc 0 1 0 1 0
C=cll c12 | c13 R=r11 ri12 | ri13 U=ull ul2
c21 c22 | ¢c23 r21 r22 | r23 u21 u22
c31 32 | ¢33 r31 r32 | r33 u31l u32
c41 c42 | c43 rd1l r42 | r43 udl u4?2
c51 ¢52 | c¢b3 r51 152 | r53 ubl ub2

Now, for each I, the original sequential code solves the equation:

atl bil il uil ril
ai2 b2 ci2 wi2 | =1 ri2
ai3 b3 ci3 ui3 713

where for our example, I goes from 1 to 5 for a total of five decoupled set
of equations. Of course, for our example cil and ai3 will be equal to zero
each since the resulting equation for each I is tridiagonal in nature. Each
process can be made to handle a number of I’s since each I is independent
of another. For this to happen however, each process will need to get from
other processes parts of A, B, C and R needed for its I’s and transpose it before
solving for the unknowns. For our example, assuming Process 0 is set to do
I=1:3 and Process 1 to do I=4:5, then, Process 0 will need elements of A, B, C
and R corresponding to I=1:3 and J=3 from Process 1 and likewise, Process
1 will need elements of A, B, C and R corresponding to I=4:5 and J=1:2 from
Process 0. After all processes complete their work, each will have elements
of the solution U for their I's. For our example, Process 0 will have u(I,J)
with I=1:3 and J=1:3 and Process 1 will have u(I,J) with I=4:5 and J=1:3.
Thus the solution U will need to be redistributed in a reverse order to what
was done for A,B,C and R so that in the end, each process will have u(I,J),
I=1:5 but J=1:2 for Process 0 and J=3 for Process 1. To achieve both the

33

ul3
u23
u33
uéd3
ub3

forward and the reverse distributions, an overloaded subroutine TRANSP is
made available in DOMAIN_DECOMP.f. This subroutine is called for each of A,
B, C, R and U from subroutine TRIDIAG_2D_DIST. For U, the optional logical
argument "reverse” is supplied to indicate the direction of distribution. The
interface for TRANSP looks like

INTERFACE TRANSP
MODULE PROCEDURE TRANSPOSE_ij
MODULE PROCEDURE TRANSPOSE_ijk
END INTERFACE

where TRANSPOSE_ij and TRANSPOSE_ijk have argument lists

SUBROUTINE TRANSPOSE_ijk(grid, x_in, x_out, reverse)
TYPE (DIST_GRID), INTENT(IN) :: grid

REAL*8 :: x_in(:,grid%J_STRT_HALQO:,:)

REAL*¥8 :: x_out(:,:,:)

Logical, Optional, INTENT(IN) :: reverse

SUBROUTINE TRANSPOSE_ij(grid, x_in, x_out, reverse)
TYPE (DIST_GRID), INTENT(IN) :: grid

REAL*8 :: x_in(:,grid%J_STRT_HALQ:)

REAL*¥8 :: x_out(:,:)

Logical, Optional, INTENT(IN) :: reverse

6 Using Parallel Implementation

6.1 Current Limits of Implementation

As described in the previous sections, the distributed memory parallelization
is achieved by dividing the number of latitudes among processes. Theoreti-
cally speaking, one should be able to achieve a granularity of one latitude per
process. However, the current implementation indicates that doing less than
three latitudes per process does not give “correct” results. We are currently
working on rectifying this but in the meantime, the number of latitudes per
process should be limited to not less than three.

34

6.2 System Issues with Running Parallel Code
6.2.1 Special Launch Environment

The parallel executable requires MPI parallel environment to run. Each par-
allel computing center has some prescribed way of making resources available
to a parallel job depending on platforms at and the policies of the center.
Very often, parallel jobs are allowed to run only in the batch queues using
some queuing system. Users are usually allowed to submit a batch-interactive
session if they wish to perform some inetractive activities like debugging with
respect to the parallel executable. Section 6.3 gives some examples of how
to run on NCCS machines halem (HP SC45) and daley (SGI Origin3000).

6.2.2 Special Launch Mechanism

The parallel executable requires a mechanism/command for launching MPI
jobs. This is platform dependent. The user will need to find out from the
parallel computing center what the mechanism/command is. Section 6.3
gives some examples of how to run on NCCS machines halem (HP SC45)
and daley (SGI Origin3000).

6.3 Building and Running the Parallel Execuatable

The parallel version of the modelE program requires the ESMF (Earth Sci-
ences Modeling Framework) software library. The ESMF library is installed
on Halem and could be accessed using the module command. If the ESMF
library is not installed on your system, it could be downloaded from

http://sourceforge.net/projects/esmf/.

Building and running the parallel executable is similar to the serial case
execept that additional arguments are appended to the command line to
compile the program with support for ESMF and to specify the number of
processors at run time.

The following is an example of how to compile and run the modelE pro-
gram in the parallel case. In this example, the test case is called myrun and
the rundeck used is E1F20.

The steps are:

1. Build the rundeck

35

gmake rundeck RUN=myrun RUNSRC=E1F20
2. Compile the program
gmake gcm RUN=myrun RUNSRC=E1F20 ESMF=YES
3. Run a 1 hour setup simulation using 16 processors
gmake setup_nocomp RUN=myrun RUNSRC=E1F20 ESMF=YES NPES=16

4. After the 1 hour setup simulation completes successfully, edit the “I”
file in the output directory and specify the duration of the run.

5. Run the simulation

setenv MP_NUM_THREADS <number of processors>
./TunE myrun

Steps 1, 2 and 3 are carried out from the “decks” directory and step 5
is carried out from the “exec” directory. Also, if your system uses a batch
system to run parallel jobs, steps 3 and 5 need to be executed from within
a batch script. Steps 2 and 3 could be combined into a single step using the
“setup” option as follows:

gmake setup RUN=myrun RUNSRC=E1F20 ESMF=YES NPES=16

6.3.1 Porting Issues

In this section, we address how to modify the Makefiles and run scripts when
porting modelE to a different computer system. The make rules for compiling
modelE are defined in the file Rules.make under the “model” subdirectory. If
the operating system/compiler is not supported, the make rules for the new
system could be added by using one of the supported systems as a template.
Some of the currently supported systems are IRIX64, Linux, AIX, Mac OS
X (Darwin), Intel8 and OSF1. For example, you could open the Rules.make
file under an editor, search for the string Intel8 to locate the rules section
for the Intel8 compiler and duplicate and make the necessary changes to add

the rules for the new system. In addition, you will also need to edit the “if
block” for ESMF to specify the library and include file paths for the ESMF

36

software on your system. You could locate this block by searching for the
string ESMF after opening the file Rules.make using an editor. The best
way to determine the options required for ESMF support is to first compile
one of the validation tests that comes with the ESMF software library and
take note of what options were used to build the validation program on your
system. For example, following are the options that were used to build the
modelE program on a SGI Altix system assuming that the ESMF library is
installed in “/usr/local/esmf”.

ifeq ($(ESMF),YES)

CPPFLAGS += -DUSE_ESMF

LIBS += -size_1lp64 -mp -L/usr/local/esmf/lib/1ib0/Linux.intel.64.default -lesmf -I
FFLAGS += -I/usr/local/esmf/include

INCS += -I /usr/local/esmf/include

endif

In order to run the modelE program, you need to specify how a parallel
job is launched on your computer system. This is done by modifying the
Perl script, “setup_e.pl” located in the exec subdirectory. Once again, open
this file using an editor and search for the string “mpi_run” to locate the
section where this change needs to be made. Currently supported systems

are IRIX64, OSF1, AIX and Linux.

7 Tips for Debugging and Tuning

The message passing paradigm introduces significant complexity into the
already cumbersome process of repairing defects (bugs) and tuning perfor-
mance. In the worst case, the developer is effectively repairing/tuning n,
different applications, but fortunately the “lock-step” style of SPMD signif-
icantly reduces the complexity. Many special tools, both commercial and
free, exist to assist developers with these activities when using MPI. In this
section we provide references to some of the more valuable of these tools as
well as offer guidance on effective techniques specific to modelE.

37

7.1 Debugging MPI
7.1.1 Checksum()

Because it is infeasible to run full validation tests after every modification,
situations may arise where the parallel version fails to provide the correct
answer on varying numbers of processors, and one must track down the
defect. In the distributed memory paradigm (i.e. MPI), examining val-
ues contained in distributed arrays can be quite challenging and tedious, so
to mitigate this complexity, utility routines CHECKSUM(), CHECKSUMj (), and
CHECKSUM_COLUMN () have been created and placed within DOMAIN_DECOMP. f
to aid in that process. These routines compute a consistent set of global sums
for multidimensional arrays and send the result to a default unit or to a unit
specified by an optional argument. Additional arguments allow for specifying
the line and file from which the call was placed. This is intended to be used
in conjunction with the CPP predefined macros __LINE__ and __FILE__.

By default, all of these checksum routines are deactivated, but can be
activated at compile time via the extra flag ~-DDEBUG_DECOMP. In this manner,
such debugging instrumentation can remain in the code, but be deactivated
for production runs. With the debugging option, the initialization phase
opens a single file called CHKSUM_DECOMP and by all checksum results are
printed to that file unless overridden by the unit optional argument to the
checksum routines.

A useful technique for using the checksum routines is to create a separate
routine (we usually used the name CHECKALL()) which computes checksums
for a variety of array valued quantities in MODELE. This routine should
accept line and file information in its argument list and pass this down to
the checksum calls contained within. One then liberally sprinkles calls to
CHECKALL() throughout the code. After executing the model on differing
numbers of processors, one may diff the CHECKSUM_DECOMP files among the
runs to determine the first location at which a difference occurred. Additional
calls to CHECKALL () can be added to refine the location further if necessary.

API for CHECKSUM*() goes here.

On some occasions the checksum routines discussed above do not provide
sufficient information to determine the underlying problem. A finer grained
tool for debugging the state is provide by the routine LOG_PARALLEL (). This
procedure enables the developer to write out processor-local data to a distinct
file on each processor named LOG_<pe#>. Again as with CHECKSUM(), default

38

compilation flags leave LOG_PARALLEL deactivated. Optional arguments exist
for reporting scalar integers and reals and one-dimensional vectors of integers
and reals. Although higher-dimensional optional arguments could easily be
added, the developer is cautioned that LOG_PARALLEL () can easily produce
prohibitively large amounts of formatted data.

API for LOG_-PARALLEL() goes here.

7.1.2 Parallel Debuggers

It is sometimes useful to use parallel debuggers that have support MPI to
track down bugs. Some HPC centers have such debuggers on their systems.
At NCCS, we have the totalview debugger from Etnus on halem, the HP
SC45 system. Instructions on how to use totalview on halem can be found
at

http://nccstag.gsfc.nasa.gov/halem/totalview.html.

We also have the SGI Prodev Workshop Debugger known as cvd on our SGI
Origin systems. Instructions on how to use cvd can be found at

http://nccstag.gsfc.nasa.gov/sgio/cvd.html.

7.2 Performance Measurement and Tuning

Performance optimization for parallel applications can be somewhat nonin-
tuitive for developers familiar with optimization in a serial context. The
primary reason for this is that the available resource of processing power is
not regarded as being fixed. For example, as one attains reasonable efficiency
on a certain number of processors for a given model, an even larger number
of processors can often be exploited. A change from 90% to 95% efficiency
may effectively double the performance of an application by virtue of this
effect.

On the other side of this issue, parallel developers must bear in mind that
although increased effeciencies permit larger numbers of processors to work
effecitively on an application, there may be relatively little improvement in
terms of capacity. A larger total throughput is typically attained by running
on the smallest number of processors on which a given application will fit in
memory (and hence usually has a very high parallel efficiency). Usually a
compromise is reached between throughput and time-to-solution.

39

7.2.1 Amdahl’s Law

To be more precise about the impact of a potential optimization, it is useful
to understand Amdahl’s Law [1] for parallel efficiency. Amdahl’s law neglects
various aspects of parallel overhead related to communication, but captures
the essence that for any realistic application there is some essential work that
is essentially serial in nature. For example, the overhead of setting up a loop
is nearly independent of the number of iterations. At large iteration counts,
this is negligible, but there must be a number of processors at which the loop
count on any given processor is so low that this overhead is relevant.

Let us denote the fraction of an application which is effecively serial by
f. We then further assume that the remaining workload can be scaled at
100% efficiency on an arbitrary number of processors n,. If T is the time
to execute the application on one processor’, then it is straightforward to
derive the time 7'(n,) to execute the application on n, processors

ﬂmﬂ=ﬂ<f+1_f»

p

with an asymptotic value at large numbers of processors T — Ty f. The

parallel efficiency E(n,) = m is then given by
1
En,) = ——.
)= 1D

Amdah’s Law assumes that parallel overhead for operations such as halo
exchanges and global summation is negligible, and is therefore an optimistic
estimate of parallel efficiency. For most real applications, execution time
actually begins to increase beyond a critical number of processors as par-
allel overhead becomes more significant than savings from applying more
resources.

"It should be noted that the time to run on one processor is not necessarily the same as
the time to run the serial variant of an algorithm. In most cases, these quantities should
be quite close.

40

7.2.2 Load Imbalance and Barriers

7.2.3 TAU

8 Future Directions

In this section we list a variety of potential modifications to modelE that may
be worthwhile in the future. Whether any given aspect is worth pursuing
is dependent on the relative gain in capability and on the availability of
resources to implement.

8.1 Using more Processors

Although the scalability of this implementation of MODELE represents a sig-
nificant improvement over previous releases, further scalability would be de-
sirable in many instances. ® As discussed in an earlier section, the decision
to implement a 1D decomposition for MODELE leads to a serious restriction
on scalability At the time that this is written, the implementation requires
at least 3 latitudes within each subdomain, restricting the number of useful
processors to n, = n;/3.

8.1.1 Relaxing 1D Decomposition Restrictions.

There are two common approaches to expanding beyond the existing 1D
decomposition. The most portable of these is to use an explicit 2D entirely
within MPI. An attractive alternative that is somewhat portable, but more
effective on some architectures is the so-called hybrid model where OpenMP
is used to govern teams of threads within each MPI process.

8.1.2 2D Decomposition

To create a fully 2D decomposition within MODELE is largely an excercise
of duplicating most of the transformation on the J coordinate into the I
coordinate. The process would be somewhat more rapid due to the fact that
many issues have already been isolated, but undoubtedly new exceptional

8This statement is somewhat ameliorated by the characteristics of GISS’s workload
which which is heavily biased towards throughput as opposed to time-to-solution. Increas-
ing scalability will not significantly alter the total number of cases that can be simulated
within a given set of computing resources.

41

cases would also be found. Any forecast for the improvement in scalability
that could be achieved by such an effort is unfortunately rather speculative,
but experience based upon other codes suggest that a 2X increase in scaling
is not unreasonable for some architectures.

8.1.3 Hybrid MPI-OpenMP

The hybrid approach offers the possibility of exploiting larger numbers of
processors for a minimal effort. Indeed, much of the existing OpenMP instru-
mentation within MODELE is already suitable for supporting this paradigm.
A modest number of loops for which OpenMP is used to distribute over J
indices should be modified to distribute over other coordinates. Depending
on whether the MPI implementation on a given architecture is thread-safe,
there may need to be additional work to isolate some explicit communication
from OpenMP loops. As with the discussion of 2D domain decomposition, an
accurate prediction of scalability in this case is difficult to make, but on some
favorable architectures, such as SGI Origin, a significant gain is a reasonable
expectation.

8.2 Alternative Algorithms

A handful of algorithms within MODELE are “unfriendly” to domain decom-
position. For the current 1D decomposition, the most obvious example is
tridiagonal solves across latitudes which ultimately require expensive global
redistribution of data. In a 2D decomposition, polar filters via FFT’s would
have similar performance bottlenecks. Many models have found alternative
numerical algorithms to overcome thes issues. E.g. using iterative/multigrid
elliptic solvers in place of direct solvers, and using cubed-sphere grids to
avoid the need for polar filters (and hence FFT’s).

8.2.1 Asynchronous Communication

The current implemetation of MODELE uses so-call synchronous communica-
tion in which pairs of processors exchange data simultaneously. MPI provides
asynchronous communication protocols that can significantly reduce commu-
nication latency in some conditions depending on the underlying architecture,
and thereby increase parallel efficiency. To explore this with MODELE would
involve splitting communication calls into two phases - an asynchronous send

42

and an asynchronous receive. Conservatively, a one man-month level of effort
should be adequate to demonstrate this technique on MODELE and evaluate
the impact.

8.3 Serial Optimization

Traditional serial optimization should not be discounted. Cache-based mem-
ory systems suggest a number of code transformations that may have long-
term performance benefits to codes. Unfortunately, such optimizations re-
main an art, and are most cost effective when the expensive portions of a
code are highly-concentrated as opposed to the more diffuse profile for MOD-
ELE. Less profound, but far easier is to explore compiler flags on current
work platforms. Initial investigations on halem indicate that 10% perfor-
mance improvement can be obtained by more aggressive optimization flags
without altering the numerical answer.

References

[1] G.M. Amdahl. Validity of the single processor approach to achieve large
scale computing capabilities. In AFIPS 1967 Spring Joint Comput. Conf.,
volume 30, pages 483-485, 1967.

[2] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon. Parallel Programming in OpenMP. Academic Press, San
Diego, CA, 2001.

[3] S.-J. Lin. A finite-volume integration method for computing the pres-

sure forces in general vertical coordinates. Quart. J. Roy. Meteor. Soc.,
123:1749-1762, 1997.

[4] S.-J. Lin. A Vertically Lagrangian finite-volume dynamical core for global
models. Mon. Wea. Rev., 132:2293-2307, 2004.

[5] S.-J. Lin and R.B. Rood. Multidimensional flux-form semi-lagrangian
scheme. Mon. Wea. Rev., 124:2046-2070, 1996.

[6] S.-J. Lin and R.B. Rood. An explicit flux-form semi-lagrangian shallow
water model on the sphere. Quart. J. Roy. Meteor. Soc., 123:2477-22498,
1997.

43

[7]

G.A. Schmidt, R. Ruedy, J.E. Hansen, I. Aleinov, N. Bell, M. Bauer,
S. Bauer, B. Cairns, V. Canuto, Y. Cheng, A. Del Genio, G. Faluvegi,
A.D. Friend, T.M. Hall, Y. Hu, M. Kelley, N.Y. Kiang, D. Koch, A.A.
Lacis, J. Lerner, K.K. Lo, R.L. Miller, L. Nazarenko, V. Oinas, Ja. Perl-
witz, Ju. Perlwitz, D. Rind, A. Romanou, G.L. Russell, Mki. Sato, D.T.
Shindell, P.H. Stone, S. Sun, N. Tausnev, D. Thresher, and M.-S. Yao.
Present day atmospheric simulations using GISS ModelE: Comparison to
in-situ, satellite and reanalysis data. J. Climate. in press.

M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, and J. Dongarra.
MPI: The Complete Reference. The MIT Press, Cambridge, MA, 1997.

44

A List of Unusual Bounds Cases

ATMDYN.f (around line 662)

Original: do 2035 j=3,jm-1

Parallel: do 2035 j=max(J_0S,3), J_1S
ATMDYN.f (around line 1448)

Original: DO J=3,JM-1

Parallel: DO J=MAX(J_0S,3), J_1S
ATMDYN.f (around line 1518)

Original: DO J=3,JM-1

Parallel: DO J=MAX(J_0S,3), J_1S
CLOUDS2_DRV.f (around line 1193)

Original: DO J=J5S,J5N

Parallel: DO J=MAX(J_0,J5S),MIN(J_1,J5N)

CLOUDS_DRV.f (around line 1056)
Original: DO J=J5S,J5N
Parallel: DO J=MAX(J_0,J5S),MIN(J_1,J5N)

DIAG.f (around line 781)
Original: DO J=J5S,J5N
Parallel: DO J=MAX(J_0,J5S),MIN(J_1,J5N)

DIAG.f (around line 4077)
Original: DO J=1+JM/2,IM
Parallel: DO J=MAX(J_O,1+JM/2) ,MIN(J_1,JM)

DIAG.f (around line 4082)
Original: DO J=1,JM/2
Parallel: DO J=MAX(J_0,1),MIN(J_1,JM/2)

DIAG.f (around line 4088)

Original: DO J=1,JM/2
Parallel: DO J=MAX(J_0,1),MIN(J_1,JM/2)

45

ICEDYN_DRV.f (around line 885)

Original: DO
Parallel: DO

LAKES.f (around
Original: DO
Parallel: DO

LAKES.f (around
Original: DO
Parallel: DO

LAKES.f (around
Original: DO

120 J=2,JM-2
120 J=J_0S,MIN(JM-2,J_1)

line 561)
J=1,JM
J=MAX(1,J_0-1) ,MIN(JM,J_1+1)

line 605)
J=2,JIM-1
J=MAX(2,J_OH), MIN(JM-1,J_1H)

line 795)
JU=2,JM-1

Parallel: j_start=Max(2,J_OH)
j_stop =Min(JM-1,J_1H)

DO

JU=J_start,J_stop

LANDICE_DRV.f (around line 121)

Original: DO
Parallel: DO

J=JML, JMU
J=MAX(J_0,JML) ,MIN(J_1,JMU)

LANDICE_DRV.f (around line 134)

Original: DO
Parallel: DO

J=JML, JMU
J=MAX(J_0,JML) ,MIN(J_1,JMU)

RAD_DRV.f (around line 2129)

Original: DO
Parallel: DO

J=J5S, J5N
J=max(J_0,J58), min(J_1,J5N)

STRAT_DIAG.f (around line 241)

Original: DO
Parallel: DO

J=3,JM-1
J=MAX(3,J_0S),J_1S

STRAT_DIAG.f (around line 427)

Original: DO
Parallel: DO

J=3,JM-1
J=MAX(3,J_0S),J_18

46

TRACERS_DRV.f (around line 7064)
Original: do j=31,35
Parallel: do j=MAX(31,J_O),MIN(35,J_1)

TRACERS_DRV.f (around line 7081)
Original: do j=33,39
Parallel: do j=MAX(33,J_0),MIN(39,J_1)

TRACERS_DRV.f (around line 7098)
Original: do j=29,34
Parallel: do j=MAX(29,J_O),MIN(34,J_1)

TRACERS_DRV.f (around line 7115)

Original: do j=28,32
Parallel: do j=MAX(28,J_0),MIN(32,J_1)

47

